

Underlying Science

Objective: Characterize key upper-ocean carbon cycle components, including phytoplankton carbon biomass and physiology

Approach: Dedicated global ocean mission focused on retrieving multiple upper ocean components using inversion approaches

Requirement: Exceptional water leaving radiance retrievals

- Why?: Inversion approach more sensitive to L_{wn} errors than ratio algorithms
 - Central rate parameter of interest () has much smaller range of variability than chlorophyll biomass
 - Separation of optically active components (e.g., cDOM, pigments)
 necessary for physiology
 - Characterization of algal absorption spectra, since physiology is best described by absorption: C ratios rather than Chl: C ratios
- *How?*: Enhanced passive radiometer coupled with active Lidar system
 - Passive wavebands extended into UV region for atmospheric correction and advanced quantification of cDOM
 - Passive wavebands extended in NIR for coastal atmospheric correction
 - Lidar measurements for atmospheric profiling and in—water optics

Passive Radiometer

Design: Advanced SeaWiFS

Lead Scientist: Chuck McClain

Sensor Technology Advisor: Alan Holmes (SeaWiFS designer)

Features:

18 wavebands (UV, VIS, NIR)

Routine Lunar & Solar Calibrations

12 – 14 bit signal digitization

500 m resolution goal

Improved optical components (e.g., mirrors)

Improved focal plane design (e.g., septum b/w detectors)

Improved detectors (e.g., CCD)

Noon orbit, 650 km

Global coverage every 2 days

Passive Radiometer

PhyLM	MODIS	SeaWiFS	MERIS
345			
360			
380			
412	412	412	412
443	443	443	442
460			
490	488	490	490
510		510	510
532	531		
555	551	555	560
595			
620			620
667	667	670	665
678	678		681
			709
765	748	765	753/760/779
865	870	865	870/890/900
1000			
1240			

Hoepffner & Sathyendranath (MEPS, 1991)

• (Chl a) 413 (Chl a)

435 (Chl a)

435 (Cni a

461 (Chl c)

464 (Chl b)

490 (Carot)

532 (Carot)

583 (Chl c)

623 (Chl a)

644 (Chl a)

655 (Chl c)

676 (Chl a)

Passive Radiometer

	L-typical	Passband	S:N @500m	
345	9.000	20	685	
360	7.503	20	833	
380	7.221	20	1149	
412	8.250	20	1633	
443	7.750	20	2052	
460	6.900	20	2110	
490	6.250	20	2181	
510	4.750	20	1972	
532	4.170	20	1800	
555	3.500	20	1766	
595	2.700	20	1590	
620	1.900	20	1360	
667	1.500	20	1289	
678	1.398	20	1249	
765	0.900	30	1190	
865	0.850	35	902	
1000	0.520	40	417	
1240	0.280	50	<400	

absorbing aerosols cDOM

algal absorption

- accessory pigments
- gross taxonomy heritage wavelengths slope of backscatter lidar match-up absorption minimum fluorescence baseline

Morrison & Nelson (2004) Limnol. Oceangr. 49:215-224

atmospheric correction

- open ocean
- coastal

Lidar measurements

Nd:Yag laser @ 532 and 1064 nm 500 mJ pulse @ 532 nm 40 – 400 pulse per second repetition rate 40 M footprint

1.5 m receiver telescope

✓ Products:	Priority	Measurement
> 532/1064 nm for atmospheric aerosol profiles	10	C Emil
532 nm for in-water particle scattering coefficient	10	
645 nm for Raman scattering (fluorescence correction)	20	
685 nm for <i>high-biomass</i> chlorophyll fluorescence	20	

GLAS atmospheric profiling

Global Ocean Biogeochemistry Missions

OCEAN BIOGEOCHEMISTRY MISSIONS

Page 1 of 1																9/17/	03
Instrument (Mission; Country)	96	97	98	99	00	01	02	03	04	05	06	07	08	09	10	11	12
GLOBAL MISSIONS																	
OCTS (ADEOS-I; Japan)	_																
POLDER (ADEOS-I/II; France & Japan)	<u> </u>																
SeaWiFS (Orbview-2; U.S.)								>									
MODIS (Terra; U.S.)										>							
MISR (Terra; U.S.)										>							
MERIS (ENVISAT; ESA)												•					
GLI (ADEOS-II; Japan)							<u> </u>	.					>				
MODIS (Aqua; U.S.)							_					<u> </u>					
VIIRS (NPP: U.S.)											<u> </u>	1				— >	
PhyLM													©	<u> </u>			

PhyLM Concept Summary

- O ESSP-class mission dedicated Ocean science
- Advances/expansion of established technology
- Exceptional ocean color data is *The Order 1 objective*
- Support for VIIRS (focus on calibration/validation, near-noon orbit)
- PhyLM & VIIRS follows 'two mission coverage' strategy and give redundancy in event of sensor failure
- Coastal/shelf/high production areas
- Proof of concept opportunity for lidar in—water retreivals
- Project Principle Investigators: M. Behrenfeld & C. McClain
 Formulation Manager: Jan Gervin
 Engineering Advisor: Lloyd Purves
 Science team TBD

....A Community Mission....

Backup Slides

Absorbing Aerosols: Problems

NIR Reflectances provide no information

Underestimation of water-leaving spectrum significantly

Significant differences in the blue and UV bands

- Need UV bands to identify the strongly absorbing aerosols
- Need Lidar data to provide aerosol vertical profile

